29 Polymerisation Practice questions

Question number	Answer	Marks	Guidance
1 (a)	CH ₃ CH=CHCH ₃ addition polymerisation	2	If the monomer has a double C=C then it is addition polymerisation.
1 (b)	CH ₃ CH(OH)CH(OH)CH ₃ or with no brackets	1	
	butane-2,3-diol	1	numbers essential for marks
	HOOC — C — C — COOH 	1	Accept 2,3-dimethylbutanedioyl chloride.
	2,3–dimethylbutanedioic acid condensation polymerisation	1	Remember if the 2 monomers are different and are both bifunctional then this will be
	condensation polymensation	1	condensation polymerisation.
1 (c)	NaOH or HCl or Na ₂ CO ₃	1	Remember you cannot have water on its own.
2	polyamide or nylon (2,4) condensation	1	award the mark here for nylon with no numbers or an answer with correct numbers do not award the mark if the numbers are wrong
3 (a) (i)	H H	1	trailing bonds at the ends are essential to show it continues to bond in a chain
3 (a) (ii)	Addition	1	
3 (b) (i)	C ₃ H ₄ O ₂	1	the best way to figure this out is to count all the C, H, and O and then find the smallest ratio of them
3 (b) (ii)	HO — C — CH ₂ CH ₂ — C — OH	1	
	1,4-butanedioic acid	1	
3 (b) (iii)	Can be hydrolysed OR Can react with nucleophiles.	1	Either of these answers would be awarded the mark.
4 (a)	Additional	1	You must show trailing ends on the repeating unit.
	CH ₃ H	1	
4 (b)	CH ₃ CH=CHCH ₂ CH ₃	1	

AQA Chemistry

29 Polymerisation Practice questions

			,
4 (c)	OR OR	1	
5 (a) (i)	2-methylbut-1-ene	1	
5 (a) (ii)	CH ₃ CH ₂ (—)C — CH ₂ (—) CH ₃	1	1 mark is given for the drawing of the correct repeating unit and 1 mark is given for naming the type of polymerisation.
	addition	1	
5 (b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	
	condensation (poly)peptide OR (poly)amide	2	Poly is not needed in the answer to gain the mark Make sure the amide is spelt
	(poly)peptide OK (poly)amide		correctly.
6 (a) (i)	hexane-1,6-diamine	1	
6 (a) (ii)	(—)C — (CH ₂) ₄ — C — N — (CH ₂) ₆ — N(—) 	1	You could put CONH in this structure but it is better to show all the bonds.
6 (b) (i)	CH ₃ H ₂ N — C — COOH H	1	Remember to count the longest C chain even if it 'goes around corners' and put the NH ₂ on it.
6 (b) (ii)	CH ₃ CH ₃ H ₂ N - C - C - N - C - COOH H O H H	1	The peptide link is essential for the mark.
7 (a)	Polyalkenes are inert since they have a structure like a saturated alkane and are therefore difficult to react (unless there is UV light to break the bonds in the molecules)	2	These can have several sensible answers. You must think about the environmental aspects and 'How Science Works'.
7 (b)	Polyesters and polyamides can have the peptide link hydrolysed in acidic conditions or by enzyme action, etc.	2	
7 (c)	Not using up natural resources to make the raw materials and stops build-up of landfill sites with polymers in them.	2	